J/Y production relative to the reaction plane in Pb-Pb collisions at the CERN SPS

Francesco Prino
INFN - Sezione di Torino

for the NA50 collaboration

Hard Probes 2006, Asilomar, June 14th 2006

Physics motivation

J/\Panomalous suppression

- Proposed mechanisms for anomalous suppression:
 - → Charmonium dissociation in the QGP (Matsui, Satz, PLB178 (1986) 416)
 - ⇒ Break-up by co-moving hadrons (Armesto, Capella, PLB430 (1998) 23)
- J/Ψ azimuthal anisotropy relative to the reaction plane
 - → could help to distinguish between these 2 mechanisms

Observables: V₁

 Anisotropy in the observed particle azimuthal distribution due to correlations between the azimuthal angle of the outgoing particles and the direction of the impact parameter

$$\frac{dX}{d\varphi} = \frac{X_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos(2(\varphi - \Psi_{RP})) +)$$

Isotropic 2 1.5 0.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -1.5 -1.5 -1.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Directed flow coefficient

$$v_1 = \langle \cos \left(\varphi - \Psi_{RP} \right) \rangle$$

Observables: V₂

 Anisotropy in the observed particle azimuthal distribution due to correlations between the azimuthal angle of the outgoing particles and the direction of the impact parameter

$$\frac{dX}{d\varphi} = \frac{X_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos(2(\varphi - \Psi_{RP})) +)$$

Elliptic flow coefficient

$$v_2 = \langle \cos(2(\varphi - \Psi_{RP})) \rangle$$

Possible sources of $J/\Psi v_2$

- 1) Charm elliptic flow
 - Flow = collective motion superimposed to thermal motion
 - \Rightarrow for J/Ψ formed by $c\overline{c}$ recombination

Not likely to occur at SPS energies

Greco, Ko, Rapp, PLB595 (2004) 202

- 2) cc break-up on co-moving hadrons
 - More pions in-plane than out-of-plane
 ✓ due to pion elliptic flow
 - \Rightarrow J/ Ψ exiting in-plane more absorbed

Give rise to negative values of v_2 with smooth centrality dependence

Heiselberg, Mattiello, PRC60 (1999) 44902

- 3) $c\bar{c}$ break-up by *QGP hard gluons*
 - ⇒ parton density azimuthally anisotropic
 - \Rightarrow J/ Ψ exiting out-of-plane more absorbed

Give rise to positive values of v_2 with sudden onset at the centrality for which the critical conditions for QGP are attained

Wang, Yuan, PLB540 (2002) 62Zhu, Zhuang, Xu, PLB607 (2005) 207

Experimental setup

NA50 setup – year 2000

Study of muon pair production in Pb-Pb collisions

- Pb beam
 - ⇒ E_{beam} = 158 GeV/nucleon
- Beam detectors
- Pb target in vacuum
 - ⇒ thickness = 4 mm

- Centrality detectors
 - \Rightarrow EM calorimeter (1.1< η_{lab} <2.3)
 - \Rightarrow Multiplicity Detector (1.1< η_{lab} <4.2)
 - \Rightarrow Zero Degree Calorimeter (η_{lab} >6.3)
- Muon spectrometer (2.7 η_{lab} <3.9)
 - → toroidal magnet+MWPC+hodoscopes

Reaction plane estimation

16.7 cm

8.1 cm

Ring 4

Ring 3

Scintillating fibres

• Electromagnetic calorimeter

 \Rightarrow Measures neutral (γ and π^0) E_T

→ Made of Pb and scintillating fibers

⇒Distance from target: 20 cm

⇒ Pseudorapidity coverage: $1.1 < \eta_{lab} < 2.3$

⇒ Azimuthal segmentation: 6 (60° wide) sextants

→ Radial segmentation: 4 rings

 \Rightarrow Exploit anisotropy of produced E_T to estimate the reaction plane

$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{\sum_{i=1}^6 E_T^i \sin(n\varphi_i)}{\sum_{i=1}^6 E_T^i \cos(n\varphi_i)} \right)$$

 \Rightarrow n = Fourier harmonic, ϕ_i = central azimuth of sextant i, E_T^i = E_T in sextant i \Rightarrow several methods to estimate event-plane resolution under study

Event plane direction

- Electromagnetic calorimeter in the backward rapidity region
 - \Rightarrow v₁ of pions in the backward region is positive (NA49, WA98)
 - \checkmark pions flow in the opposite direction with respect to spectator nucleons \rightleftharpoons Event plane Ψ_1 directed:
 - ✓ opposite to the direction of spectator nucleons in the backward hemisphere
 - ✓ along the direction of spectator nucleons in the forward hemisphere

 \Rightarrow v₂ of pions in the backward region is positive (NA49, CERES)

Event plane flattening

- Event plane azimuthal distribution should be flat (isotropic)

 ⇒no preferential direction for the impact parameter
- Acceptance correction
 - Flattening by weighting each sextant with the inverse of $\langle E_{T} \rangle$ measured by that sextant (Poskanzer, Voloshin, PRC58 (1998) 62)
 - ⇒very small correction (practically uniform calorimeter azimuthal acceptance)

Analysis techniques

Analysis strategy

- Need to separate J/Ψ from background dimuons
 - \Rightarrow Background dimuons in J/ Ψ mass range \approx 5-15% (depending on centrality)
- Two kinds of analysis
 - \Rightarrow Extract number of J/ Ψ in bins of azimuthal angle
 - ✓ 2 different methods for background subtraction
 - \Rightarrow Estimate J/ Ψ Fourier coefficients v_1 and v_2
 - ✓ 2 different methods to calculate v_1 and v_2

	$10 < E_T < 30$		$50 < E_T < 70$		$90 < E_T < 120$	
J/ψ	15556	(95.8%)	18656	(90.9%)	18717	(86.0%)
ψ'	6	(0.0%)	6	(0.0%)	2	(0.0%)
DY	392	(2.4%)	673	(3.3%)	855	(4.0%)
$Dar{D}$	108	(0.7%)	203	(1.0%)	178	(0.8%)
COMBIN.	171	(1.1%)	979	(4.8%)	2004	(9.2%)
Background	677	(4.2%)	1861	(9.1%)	3039	(14.0%)
S/B	23.0		1	0.0	(6.2
$S/\sqrt{S+B}$	122		130		127	

Number of J/Ψ in azimuthal bins Method 1 = "Fitting"

 Build mass spectra of dimuons in bins of:

```
\Rightarrow centrality (E_T)
```

- \Rightarrow azimuthal angle relative to the event plane $(\Delta \Phi_n = \Phi_{\text{dimu}} \Psi_n)$
- Fit to dimuon mass spectra
 - ⇒5 components
 - ✓ J/Ψ, Ψ, DY, open charm, combinatorial background
 - ✓ functional forms from Monte
 Carlo simulations with detailed
 description of the NA50 setup
 - ⇒6 free parameters
 - ✓ 4 normalizations + J/\Pmass and width
 - Limited by DY statistics.

Number of J/Ψ in azimuthal bins Method 2 = "Counting"

 Build E_T spectra of Opposite Sign dimuons with 2.9 < M < 3.3 GeV/c² in bins of azimuthal angle relative to the event plane and subtract:

 \Rightarrow Combinatorial bck \rightarrow from Like Sign dimuons in 2.9 < M < 3.3 GeV/c²

 \Rightarrow DY \Rightarrow from Opposite Sign dimuons in M > 4.2 GeV/c²

 \Rightarrow Open Charm \rightarrow from Opposite Sign dimuons in 2.2 < M < 2.6 GeV/c²

Estimate $J/\Psi v_n$ Method 1 = "Cosine spectra"

- Build cos[n(Φ_{dimu} - Ψ_{n})] spectra of dimuons with 2.9<M<3.3 GeV/c² in E_{T} (p_T) bins
 - \Rightarrow Subtract combinatorial bck, DY and open charm $\cos[n(\Phi_{\text{dimu}}-\Psi_{\text{n}})]$ spectra
- Calculate $v'_n = \langle \cos[n(\Phi_{dimu} \Psi_n)] \rangle$

 \Rightarrow need to correct for event plane resolution to obtain v_n (under investigation)

 \Rightarrow v'_n always smaller than v_n

Estimate $J/\Psi v_n$ Method 2 = "Fit to $N^{J/\Psi}$ in azimuthal bins"

- Count dimuons in 2.9< M<3.3 GeV/ c^2 in bins of E_T and $\Delta\Phi_n = \Phi_{dimu} \Psi_n$ \Rightarrow Subtract combinatorial bck, DY and open charm
- Fit with:

$$\Rightarrow dN/d\Delta\Phi_1 = A[1 + 2 v_1 \cos(\Delta\Phi_1) + 2 v_2 \cos(2\cdot\Delta\Phi_1)]$$

$$\Rightarrow dN/d\Delta\Phi_2 = A[1 + 2 v_2 \cos(2\cdot\Delta\Phi_2)]$$

Preliminary results

Directed anisotropy (I)

E _⊤ range (GeV)	$N^{reco}(J/\Psi)$ along Ψ_1	$N^{reco}(J/\Psi)$ opposite Ψ_1
10-30	8600	9300
30-50	10200	11100
50-70	10400	11100
70-90	9900	10100
90-120	10600	11000

- More J/ Ψ 's emitted "opposite to the plane"
 - \Rightarrow negative $J/\Psi v_1$
 - \Rightarrow more J/Y's in the azimuthal region where there are more pions
 - Anisotropy decreases with increasing centrality
- Unexpectedly large anisotropy BUT momentum conservation effects not taken into account
- Good agreement between the 2 analysis methods

Directed anisotropy (II)

- Systematic effects being evaluated
 - No event-plane resolution correction
 - No momentum conservation correction
- Negative J/ Ψ v₁
 - \Rightarrow same v_1 sign as for pions
 - → more J/Y in the azimuthal region opposite to projectile spectator bounce-off direction
 - Good agreement between the 2 analysis methods

Elliptic anisotropy (I)

E _⊤ range (GeV)	N ^{reco} (J/Y) in plane	N ^{reco} (J/Y) out of plane
10-30	9100	8900
30-50	10700	10500
50-70	10700	10800
70-90	10300	9700
90-120	10900	10700

- Slightly more J/Ψ 's emitted "in plane" \Rightarrow negative v_2 (i.e. more J/Ψ observed out-of-plane) seems excluded
- Good agreement between the 2 analysis methods

Elliptic anisotropy (II)

- Small positive $J/\Psi v_2$ on average \Rightarrow more J/Ψ 's exiting in plane
- Negative J/Ψ v₂ excluded
 ⇒exclude a major role for breakup by co-movers
- Systematic effects being evaluated ⇒No event-plane resolution correction
 - Good agreement between the 2 analysis methods

Cross-checks: E_{ZDC} centrality bins

• EMCALO used both for event plane and for centrality determination $\Rightarrow E_{ZDC} \rightarrow$ independent centrality estimator

Similar centrality dependence as from E_T analysis
 ⇒Exclude a bias from centrality selection

Cross-checks: event-plane flattening

 Different choices of flattening the event plane do not change significantly v_n' results

Conclusions

- Preliminary results on J/Ψ production relative to the event plane in Pb-Pb collisions at 158 A GeV/c from NA50 experiment
 - Event plane from azimuthal distribution of neutral transverse energy
 - Correction for event plane resolution not applied
 - ✓ presently under study
- Negative J/Ψ v₁
 - Unexpectedly large v₁ BUT momentum conservation effects not taken into account
 - ✓ presently under study
 - $\ \ \, \implies$ More J/Y's in the direction opposite to spectator nucleons, i.e. in the direction where more pions go
- Positive (in-plane) J/Ψ v₂
 - → More J/Y's exiting "in plane"
 - \Rightarrow Indicates that breakup by comovers is not the main source of J/Ψ anomalous suppression

Backup

View in the transverse plane

Flow in the transverse plane

- Flow = collective motion of particles (due to high pressure arising from compression and heating of nuclear matter) superimposed on top of the thermal motion
 - Flow is natural in hydrodynamic language, but flow as intended in heavy ion collisions does not necessarily imply (ideal) hydrodynamic behaviour
- Isotropic expansion of the fireball:
 - Radial transverse flow
 - \checkmark Only type of flow for b=0
 - ✓ Relevant observables: $p_T(m_T)$ spectra
- Anisotropic patterns:
 - Directed flow
 - ✓ Generated very early when the nuclei penetrate each other
 - Expected weaker with increasing collision energy
 - ✓ Dominated by early non-equilibrium processes
 - ⇒Elliptic flow (and hexadecupole...)
 - ✓ Caused by initial geometrical anisotropy for $b \neq 0$
 - Larger pressure gradient along X than along Y
 - ✓ Develops early in the collision (first 5 fm/c)

In-plane vs. out-of-plane

$$\frac{dX}{d\varphi} = \frac{X_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_{RP}) + 2v_2 \cos(2(\varphi - \Psi_{RP})) +)$$

Elliptic flow coefficient:

v₂>0 In plane elliptic flowv₂<0 Out of plane elliptic flow

J/Y anisotropy due to QGP

- Charmonium break p on hard gluons present in the deconfined medium
 - Gluon density in not isotropic in non central collisions due to the almond shaped overlap region
 - Sets in when the critical conditions for deconfinement are attained

Event plane resolution

- Can not define sub-events from azimuthal sectors (sextants)

 ⇒only 6 azimuthal sextants
- Can not define sub-events from radial (rapidity) sectors (rings)
 - Non-flow correlations between contiguous rings _
 ⇒ Different number of particles hitting each ring
- Ψ_1 and Ψ_2 turn out to be well correlated

J/Y azimuthal distribution

ullet J/ Ψ azimuthal angle from reconstructed muon momenta

$$\Phi_{\text{dimu}} = \tan^{-1} \frac{p_y^{\mu 1} + p_y^{\mu 2}}{p_x^{\mu 1} + p_x^{\mu 2}}$$

azimuthal distribution not flat due to acceptance effects

p_T dependence of J/Ψ anisotropy

